• Title of article

    An LFT approach to parameter estimation

  • Author/Authors

    Hsu، نويسنده , , Kenneth and Vincent، نويسنده , , Tyrone and Wolodkin، نويسنده , , Greg and Rangan، نويسنده , , Sundeep and Poolla، نويسنده , , Kameshwar، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    6
  • From page
    3087
  • To page
    3092
  • Abstract
    In this paper we consider a unified framework for parameter estimation problems. Under this framework, the unknown parameters appear in a linear fractional transformation (LFT). A key advantage of the LFT problem formulation is that it allows us to efficiently compute gradients, Hessians, and Gauss–Newton directions for general parameter estimation problems without resorting to inefficient finite-difference approximations. The generality of this approach also allows us to consider issues such as identifiability, persistence of excitation, and convergence for a large class of model structures under a single unified framework.
  • Keywords
    System identification , Parameter estimation , Linear fractional transformation , Maximum likelihood
  • Journal title
    Automatica
  • Serial Year
    2008
  • Journal title
    Automatica
  • Record number

    1447458