Title of article :
Identification of ARX systems with non-stationary inputs — asymptotic analysis with application to adaptive input design
Author/Authors :
Gerencsér، نويسنده , , Lلszlَ and Hjalmarsson، نويسنده , , Hهkan and Mهrtensson، نويسنده , , Jonas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
11
From page :
623
To page :
633
Abstract :
A key problem in optimal input design is that the solution depends on system parameters to be identified. In this contribution we provide formal results for convergence and asymptotic optimality of an adaptive input design method based on the certainty equivalence principle, i.e. for each time step an optimal input design problem is solved exactly using the present parameter estimate and one sample of this input is applied to the system. The results apply to stable ARX systems with the input restricted to be generated by white noise filtered through a finite impulse response filter, or a binary signal obtained from the latter by a static nonlinearity.
Keywords :
Stochastic regression , Binary inputs , Adaptive control , Experiment design , LMI-s
Journal title :
Automatica
Serial Year :
2009
Journal title :
Automatica
Record number :
1447572
Link To Document :
بازگشت