Title of article :
Geometric properties of partial least squares for process monitoring
Author/Authors :
Li، نويسنده , , Gang and Qin، نويسنده , , S. Joe and Zhou، نويسنده , , Donghua، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
204
To page :
210
Abstract :
Projection to latent structures or partial least squares (PLS) produces output-supervised decomposition on input X, while principal component analysis (PCA) produces unsupervised decomposition of input X. In this paper, the effect of output Y on the X-space decomposition in PLS is analyzed and geometric properties of the PLS structure are revealed. Several PLS algorithms are compared in a geometric way for the purpose of process monitoring. A numerical example and a case study are given to illustrate the analysis results.
Keywords :
Partial least squares (PLS) , Weight-deflated PLS (W-PLS) , Simplified PLS (SIMPLS) , process monitoring
Journal title :
Automatica
Serial Year :
2010
Journal title :
Automatica
Record number :
1447930
Link To Document :
بازگشت