Title of article :
System identification of nonlinear state-space models
Author/Authors :
Antonio and Schِn، نويسنده , , Thomas B. and Wills، نويسنده , , Adrian and Ninness، نويسنده , , Brett، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
11
From page :
39
To page :
49
Abstract :
This paper is concerned with the parameter estimation of a general class of nonlinear dynamic systems in state-space form. More specifically, a Maximum Likelihood (ML) framework is employed and an Expectation Maximisation (EM) algorithm is derived to compute these ML estimates. The Expectation (E) step involves solving a nonlinear state estimation problem, where the smoothed estimates of the states are required. This problem lends itself perfectly to the particle smoother, which provides arbitrarily good estimates. The maximisation (M) step is solved using standard techniques from numerical optimisation theory. Simulation examples demonstrate the efficacy of our proposed solution.
Keywords :
Smoothing filters , particle methods , Expectation maximisation algorithm , nonlinear models , System identification , Monte Carlo Method , dynamic systems
Journal title :
Automatica
Serial Year :
2011
Journal title :
Automatica
Record number :
1448192
Link To Document :
بازگشت