Title of article :
An adaptive method for consistent estimation of real-valued non-minimum phase zeros in stable LTI systems
Author/Authors :
Rojas، نويسنده , , Cristian R. and Hjalmarsson، نويسنده , , Hهkan and Gerencsér، نويسنده , , Lلszlَ and Mهrtensson، نويسنده , , Jonas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
11
From page :
1388
To page :
1398
Abstract :
An adaptive algorithm, consisting of a recursive estimator for a finite impulse response model having two non-zero lags only, and an adaptive input are presented. The model is parametrized in terms of the first impulse response coefficient and the model zero. For linear time-invariant single-input single-output systems with real rational transfer functions possessing at least one real-valued non-minimum phase zero of multiplicity one, it is shown that the model zero converges to such a zero of the true system. In the case of multiple non-minimum phase zeros, the algorithm can be tailored to converge to a particular zero. The result is shown to hold for systems and noise spectra of arbitrary degree. The algorithm requires prior knowledge of the sign of the high frequency gain of the system as well as an interval to which the non-minimum phase zero of interest belongs.
Keywords :
Adaptive estimation , Recursive estimation , Non-minimum phase zeros , System identification
Journal title :
Automatica
Serial Year :
2011
Journal title :
Automatica
Record number :
1448366
Link To Document :
بازگشت