• Title of article

    Block circulant and block Toeplitz approximants of a class of spatially distributed systems—An LQR perspective

  • Author/Authors

    Iftime، نويسنده , , Orest V.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2012
  • Pages
    8
  • From page
    3098
  • To page
    3105
  • Abstract
    In this paper block circulant and block Toeplitz long strings of MIMO systems with finite length are compared with their corresponding infinite-dimensional spatially invariant systems. The focus is on the convergence of the sequence of solutions to the control Riccati equations and the convergence of the sequence of growth bounds of the closed-loop generators. We show that block circulant approximants of infinite-dimensional spatially invariant systems reflect well the LQR behavior of the infinite-dimensional systems. An example of an exponentially stabilizable and exponentially detectable infinite-dimensional system is also considered in this paper. This example shows that the growth bounds of the Toeplitz approximants, as the length of the string increases, and the growth bound of the corresponding infinite-dimensional model, can be significantly different. On the positive side, we give sufficient conditions for the convergence of the growth bounds.
  • Keywords
    Linear systems , Infinite-dimensional systems , LQR control , Spatially distributed systems , Spatially invariant systems
  • Journal title
    Automatica
  • Serial Year
    2012
  • Journal title
    Automatica
  • Record number

    1448946