Title of article :
Human Detection Using SURF and SIFT Feature Extraction Methods in Different Color Spaces
Author/Authors :
Biglari، Osameh نويسنده Taali university, Qom, Iran , , Ahsan، Reza نويسنده Islamic Azad University, Qom branch, Iran , , Rahi، Majid نويسنده Pardisan University, Mazandaran, Feridonkenar, Iran, ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
12
From page :
111
To page :
122
Abstract :
Local feature matching has become a commonly used method to compare images. For tracking and human detection, a reliable method for comparing images can constitute a key component for localization and loop closing tasks. two different types of image feature algorithms, Scale -Invariant Feature Transform (SIFT) and the more recent Speeded Up Robust Features (SURF), have been used to compare the images. In this paper, we propose the use of a rich set of feature descriptors based on SIFT and SURF in the different color spaces.
Journal title :
The Journal of Mathematics and Computer Science(JMCS)
Serial Year :
2014
Journal title :
The Journal of Mathematics and Computer Science(JMCS)
Record number :
1450042
Link To Document :
بازگشت