Title of article :
On the metrical rigidity of binary codes
Author/Authors :
Avgustinovich، نويسنده , , S.V. and Solovʹeva، نويسنده , , F.I.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
8
From page :
444
To page :
451
Abstract :
A code C in the n-dimensional vector space En over GF(2) is called metrically rigid if every isometry I: C → En with respect to the Hamming metric is extendable to an isometry of the whole space En. A code C is reduced if it contains the all-zero vector. For n large enough the metrical rigidity of length n reduced binary codes containing a 2-(n,k,λ)-design is proved. The class of such codes includes all the families of uniformly packed codes of sufficiently large length satisfying the condition d-ρ ≥ 2, where d is the code distance and ρ is the covering radius.
Keywords :
?)-design , Uniformly Packed Codes , Metrically Rigid Codes , Strongly Rigid Codes , 2-(N , k
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2001
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1453042
Link To Document :
بازگشت