• Title of article

    Path Partitions and Pn-free Sets

  • Author/Authors

    Dunbar، نويسنده , , Jean E. and Frick، نويسنده , , Marietjie and Bullock، نويسنده , , Frank، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2002
  • Pages
    9
  • From page
    209
  • To page
    217
  • Abstract
    The detour order τ(G) of a graph G is the order of a longest path of G. A partition (A, B) of V is called an (a, b)-partition of G if τ(G[A]) ≤ a and τ(G[B]) ≤ b. The Path Partition Conjecture is the following: y graph G, with detour order τ(G) = a + b, there exists an (a, b)-partition of G. roduce and examine a conjecture which is possibly stronger: If M is a maximum Pn+1-free set of vertices of G, with n < τ(G), then τ(G − M) ≤ τ(G)− n.
  • Keywords
    longest path , detour , vertex partition
  • Journal title
    Electronic Notes in Discrete Mathematics
  • Serial Year
    2002
  • Journal title
    Electronic Notes in Discrete Mathematics
  • Record number

    1453286