Title of article :
On the genus of the groups PSL(2, q), PSL(3, q), and PSp(4, q)
Author/Authors :
Ealy Jr، نويسنده , , Clifton E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
20
From page :
233
To page :
252
Abstract :
SL(n, q) is the group of n×n matrices, over the Galois field GF(q), of determinate 1. PSL(n, q) is SL(n, q) modulo the scalar n×n matrices of determinate 1. PSL(n, q) acts on the Desarguesian projective space PG(n−1, q). Sp(4, q) is the group of 4 × 4 matrices of determinate 1 which preserve the symplectic bilinear form on the 4 × 1 matrices over GF(q). PSp(4, q) is Sp(4, q) modulo Z = {1,−1}. PSp(4, q) acts on the symplectic generalized quadrangle W(3, q), a subspace of the projective space PG(3, q), as a group of automorphisms. In this paper, bounds are given for the genus of these groups.
Keywords :
genus , Finite groups , Cayley graphs
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2002
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1453292
Link To Document :
بازگشت