Title of article :
On 3-coloring of plane triangulations
Author/Authors :
Nakamoto، نويسنده , , Atsuhiro and Ota، نويسنده , , Katsuhiro and Watanabe، نويسنده , , Mamoru، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
6
From page :
519
To page :
524
Abstract :
Let G be a plane triangulation. For a 3-vertex-coloring λ, a face of G whose vertices receive all three colors is called a vivid face with respect to λ. Let hλ (G) be the number of vivid faces in G with respect to λ. Let C(G) be the set of 3-vertex-colorings of G and let g(n) be the set of plane triangulations with n faces. Let h(G) = max {hλ (G) ∣ λ ∈ C(G)} and h(n) = min {h(G) ∣ G ∈ g(n)}. s paper we show that h(n) ≥ 12 n for any even n, and that h(n) ≤ 15 (3n − 2) for infinitely many n.
Keywords :
triangulation , plane triangulation , 3-coloring
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2002
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1453337
Link To Document :
بازگشت