Title of article :
The Domination Number of Cubic Graphs with Girth at least Five
Author/Authors :
Fisher، نويسنده , , David C. and Fraughnaugh، نويسنده , , Kathryn and Seager، نويسنده , , Suzanne M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
9
From page :
751
To page :
759
Abstract :
Let γ (G) be the domination number of a graph G. We show that if G has maximum degree at most 3 and girth at least 5, then γ(G) ≤ 17(4n − e + p + 3i) where G has n nodes, e edges, p pendant nodes, and i isolated nodes. It follows that if G is a cubic graph with girth at least 5, then γ (G) ≤ 514n.
Keywords :
Cubic graph , Domination number , girth
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2002
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1453369
Link To Document :
بازگشت