Title of article :
Edge intersection graphs of linear 3-uniform hypergraphs
Author/Authors :
Skums، نويسنده , , P.V. and Suzdal، نويسنده , , S.V. and Tyshkevich، نويسنده , , R.I.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
8
From page :
33
To page :
40
Abstract :
Let L 3 l be the class of edge intersection graphs of linear 3-uniform hypergraphs. The problem of recognizing G ∈ L 3 l is NP-complete. Denote by δ ALG the minimal integer such that the problem " G ∈ L 3 l " is polynomially solvable in the class of graphs G with the minimal vertex degree δ ( G ) ≥ δ ALG and by δ FIS the minimal integer such that L 3 l can be characterized by a finite list of forbidden induced subgraphs in the class of graphs G with δ ( G ) ≥ δ FIS . It is proved that δ ALG ≤ 10 and δ FIS ≤ 16 .
Keywords :
Edge intersection graph , linear 3-uniform hypergraph , forbidden induced subgraph , krausz decomposition
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2005
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1454083
Link To Document :
بازگشت