Title of article
On the order of bi-regular cages of even girth
Author/Authors
Balbuena، نويسنده , , C. and Araujo، نويسنده , , G. and Garcيa-Vلzquez، نويسنده , , P. and Marcote، نويسنده , , X. and Valenzuela، نويسنده , , J.C.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2006
Pages
7
From page
1
To page
7
Abstract
By a bi-regular cage of girth g we mean a graph with prescribed degrees r and m and with the least possible number of vertices denoted by f ( { r , m } ; g ) . We provide new upper and lower bounds of f ( { r , m } ; g ) for even girth g ⩾ 6 . Moreover, we prove that f ( { r , k ( r − 1 ) + 1 } ; 6 ) = 2 k ( r − 1 ) 2 + 2 r where k ⩾ 2 is any integer and r − 1 is a prime power. This result supports the conjecture f ( { r , m } ; 6 ) = 2 ( r m − m + 1 ) for any r < m formulated by Yuansheng and Liang (The minimum number of vertices with girth 6 and degree set D = { r , m } , Discrete Mathematics 269 (2003), 249–258).
Keywords
cage , degree set , girth
Journal title
Electronic Notes in Discrete Mathematics
Serial Year
2006
Journal title
Electronic Notes in Discrete Mathematics
Record number
1454390
Link To Document