Title of article :
Some contributions to the Frobeniusʹ Problem
Author/Authors :
Aguilَ-Gost، نويسنده , , F. and Miralles، نويسنده , , A. and Zaragozل، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
8
From page :
61
To page :
68
Abstract :
Given a set A = { a 1 , … , a k } with 1 ⩽ a 1 < … < a k and g cd ( a 1 , … , a k ) = 1 , let us denote R ( A ) = { m ∈ N | ∃ λ 1 , … , λ k ∈ N : m = ∑ i = 1 k λ i a i } and R ¯ ( A ) = N \ R ( A ) . The classical study of the Frobeniusʹ Problem for a given set A is the computation of the number f ( A ) = max R ¯ ( A ) (also called the Frobenius Number) and | R ¯ ( A ) | . In this work we propose a method to explicitly find the set | R ¯ ( A ) . We treat the case k = 3 in a different way from the case k > 3 .
Keywords :
minimum distance diagram , Double-loop digraph , Frobeniusי number , boundary set , set of gaps
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2007
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1454536
Link To Document :
بازگشت