Title of article :
New results on lower bounds for the number of (⩽ k)-facets: (extended abstract)
Author/Authors :
Aichholzer، نويسنده , , Oswin and Garcيa، نويسنده , , Jesْs and Orden، نويسنده , , David E. Ramos، نويسنده , , Pedro، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
5
From page :
189
To page :
193
Abstract :
In this paper we present three different results dealing with the number of (⩽ k)-facets of a set of points:(i) e structural properties of sets in the plane that achieve the optimal lower bound 3 ( k + 2 2 ) of (⩽ k)-edges for a fixed k ⩽ ⌊ n / 3 ⌋ − 1 ; w that the new lower bound 3 ( k + 2 2 ) + 3 ( k − ⌊ n 3 ⌋ + 2 2 ) for the number of (⩽ k)-edges of a planar point set shown in [O. Aichholzer, J. García, D. Orden, and P. A. Ramos. New lower bounds for the number of (⩽ k)-edges and the rectilinear crossing number of K. Discrete and Computational Geometry, in press] is optimal in the range ⌊ n / 3 ⌋ ⩽ k ⩽ ⌊ 5 n / 12 ⌋ − 1 ; w that for k < n / 4 the number of (⩽ k)-facets of a set of n points in R 3 in general position is at least 4 ( k + 3 3 ) , and that this bound is tight in that range.
Keywords :
(? k)-facets , (? k)-edges
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2007
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1454697
Link To Document :
بازگشت