Title of article :
A Spectral Study of the Manhattan Networks
Author/Authors :
Comellas، نويسنده , , F. and Dalfَ، نويسنده , , C. Marlene Fiol، نويسنده , , M.A. and Mitjana، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
5
From page :
267
To page :
271
Abstract :
The multidimensional Manhattan networks are a family of digraphs with many appealing properties, such as vertex symmetry (in fact they are Cayley digraphs), easy routing, Hamiltonicity, and modular structure. From the known structural properties of these digraphs, we fully determine their spectra, which always contain the spectra of hypercubes. In particular, in the standard (two-dimensional) case it is shown that their line digraph structure imposes the presence of the zero eigenvalue with a large multiplicity.
Keywords :
spectra , eigenvalues , Line digraph , Manhattan Network
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2007
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1454720
Link To Document :
بازگشت