Title of article :
Generalizations of Khovanskiĭʹs theorem on growth of sumsets in abelian semigroups: (extended abstract)
Author/Authors :
V. and Jelيnek، نويسنده , , Vيt and Klazar، نويسنده , , Martin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
4
From page :
273
To page :
276
Abstract :
We show that if P is a lattice polytope in the nonnegative orthant of R k and χ is a coloring of the lattice points in the orthant such that the color χ ( a + b ) depends only on the colors χ ( a ) and χ ( b ) , then the number of colors used on the lattice points lying in nP is for large n given by a polynomial (or, for rational P, by a quasipolynomial). This unifies a classical result of Ehrhart on lattice points in polytopes and a result of Khovanskiĭ on sumsets in semigroups. We also prove a strengthening of multivariate generalizations of Khovanskiĭʹs result.
Keywords :
Lattice point , Semigroup , Enumeration , Polytope
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2007
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1454721
Link To Document :
بازگشت