Title of article :
A central approach to bound the number of crossings in a generalized configuration
Author/Authors :
Lisandro Abrego، نويسنده , , Bernardo M. and Fern?ndez–Merchant، نويسنده , , Silvia and Lea?os، نويسنده , , Jes?s and Salazar، نويسنده , , Gelasio Salazar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
6
From page :
273
To page :
278
Abstract :
A generalized configuration is a set of n points and ( n 2 ) pseudolines such that each pseudoline passes through exactly two points, two pseudolines intersect exactly once, and no three pseudolines are concurrent. Following the approach of allowable sequences we prove a recursive inequality for the number of (⩽k)-sets for generalized configurations. As a consequence we improve the previously best known lower bound on the pseudolinear and rectilinear crossing numbers from 0.37968 ( n 4 ) + Θ ( n 3 ) to 0.379972 ( n 4 ) + Θ ( n 3 ) .
Keywords :
k-sets , ? k-sets , rectilinear crossing number , pseudolinear crossing number , Complete graphs
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2008
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1454873
Link To Document :
بازگشت