Title of article :
2K2 vertex-set partition into nonempty parts
Author/Authors :
Dantas، نويسنده , , Simone and Eschen، نويسنده , , Elaine M. and Faria، نويسنده , , Luerbio and de Figueiredo، نويسنده , , Celina M.H. and Klein، نويسنده , , Sulamita، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
A graph is 2K2-partitionable if its vertex set can be partitioned into four nonempty parts A, B, C, D such that each vertex of A is adjacent to each vertex of B, and each vertex of C is adjacent to each vertex of D. Determining whether an arbitrary graph is 2K2-partitionable is the only vertex-set partition problem into four nonempty parts according to external constraints whose computational complexity is open. We show that for C4-free graphs, circular-arc graphs, spiders, P4-sparse graphs, and bipartite graphs the 2K2-partition problem can be solved in polynomial time.
Keywords :
Structural graph theory , Computational difficulty of problems , Analysis of algorithms and problem complexity
Journal title :
Electronic Notes in Discrete Mathematics
Journal title :
Electronic Notes in Discrete Mathematics