Title of article :
b-chromatic number of cacti
Author/Authors :
Campos، نويسنده , , Victor and Linhares Sales، نويسنده , , Clلudia and Maffray، نويسنده , , Frédéric and Silva، نويسنده , , Ana، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
6
From page :
281
To page :
286
Abstract :
A b-colouring of a graph G is a proper colouring of G such that each colour contains a vertex that is adjacent to all other colours and the b-chromatic number χ b ( G ) is the maximum number of colours used in a b-colouring of G. If m ( G ) is the largest integer k such that G has at least k vertices with degree at least k − 1 , then we know that χ b ( G ) ⩽ m ( G ) . Irving and Manlove [Irving, R.W. and Manlove, D.F., The b-chromatic number of a graph, Discrete Applied Mathematics, 91 (1999), pages 127–141] prove that, if T is a tree, then the b-chromatic number of T is at least m ( T ) − 1 . In this paper, we prove that, if G is a connected cactus and m ( G ) ⩾ 7 , then the b-chromatic number of G is at least m ( G ) − 1 .
Keywords :
graph , Complexity , cactus , b-colouring
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2009
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1455316
Link To Document :
بازگشت