Title of article :
Complexity dichotomy on degree-constrained VLSI layouts with unit-length edges
Author/Authors :
de Sل، نويسنده , , Vinيcius G.P. and de Figueiredo، نويسنده , , Celina M.H. and da Fonseca، نويسنده , , Guilherme D. and Machado، نويسنده , , Raphael، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
8
From page :
391
To page :
398
Abstract :
Deciding whether an arbitrary graph admits a VLSI layout with unit-length edges is NP-complete [Bhatt, S.N., and Cosmadakis, S.S., The complexity of minimizing wire lengths in VLSI layouts, Inform. Process. Lett. 25 (1987), 263–267], even when restricted to binary trees [Gregori, A., Unit-length embedding of binary trees on a square grid, Inform. Process. Lett. 31 (1989), 167–173]. However, for certain graphs, the problem is polynomial or even trivial. A natural step, outstanding thus far, was to provide a broader classification of graphs that make for polynomial or NP-complete instances. We provide such a classification based on the set of vertex degrees in the input graphs, yielding a comprehensive dichotomy on the complexity of the problem, with and without the restriction to trees.
Keywords :
NP-complete , partial grid , algorithm , VLSI , graph
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2010
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1455425
Link To Document :
بازگشت