Title of article :
Hamiltonian Cycles in Kneser Graphs for
Author/Authors :
Bueno، نويسنده , , L.R. and Figueiredo، نويسنده , , C.M.H. and Faria، نويسنده , , L. and Mendonça، نويسنده , , C.F.X. and Hausen، نويسنده , , R.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
The Kneser graph K ( n , k ) has all k-subsets of an n-set as its vertices and two subsets are adjacent if they are disjoint. Lovász conjectured that every connected vertex-transitive graph has a hamiltonian path. For n ⩾ 2 k + 1 , the Kneser graphs form a well-studied family of connected, regular, vertex-transitive graphs. A direct computation of hamiltonian cycles in K ( n , k ) is not feasible for large values of k, because K ( n , k ) has ( n k ) vertices. We give a sufficient condition for K ( 2 k + 2 , k ) to be hamiltonian for odd k: the existence of a particular hamiltonian path in a reduced graph over K ( 2 k + 2 , k ) . Also, we extend this result to the bipartite Kneser graphs B ( 2 k + 2 , k ) for odd k.
Keywords :
hamiltonian cycle , Kneser graphs , hamiltonian path
Journal title :
Electronic Notes in Discrete Mathematics
Journal title :
Electronic Notes in Discrete Mathematics