Title of article :
The Universal Edge Elimination Polynomial and the Dichromatic Polynomial
Author/Authors :
Averbouch، نويسنده , , I. and Kotek، نويسنده , , T. and Makowsky، نويسنده , , J.A. and Ravve، نويسنده , , E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
The dichromatic polynomial Z ( G ; q , v ) can be characterized as the most general C-invariant, i.e., a graph polynomial satisfying a linear recurrence with respect to edge deletion and edge contraction. Similarly, the universal edge elimination polynomial ξ ( G ; x , y , z ) introduced in [Ilya Averbouch, Benny Godlin, and Johann A. Makowsky. An extension of the bivariate chromatic polynomial. Eur. J. Comb, 31(1):1–17, 2010] can be characterized as the most general EE-invariant, i.e., a graph polynomial satisfying a linear recurrence with respect to edge deletion, edge contraction and edge extraction. In this paper we examine substitution instances of ξ ( G ; x , y , z ) and show that among these the dichromatic polynomial Z ( G ; q , v ) plays a distinctive rôle.
Keywords :
Graph polynomials , Matching polynomial , Universal edge elimination polynomial , Edge-cover polynomial , Dichromatic polynomial
Journal title :
Electronic Notes in Discrete Mathematics
Journal title :
Electronic Notes in Discrete Mathematics