Title of article :
Adjacent vertex-distinguishing edge coloring of graphs with maximum degree at least five
Author/Authors :
Hervé Hocquard، نويسنده , , Hervé and Montassier، نويسنده , , Mickaël، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
6
From page :
457
To page :
462
Abstract :
An adjacent vertex-distinguishing edge coloring, or avd-coloring, of a graph G is a proper edge coloring of G such that no pair of adjacent vertices meets the same set of colors. Let mad ( G ) and Δ ( G ) denote the maximum average degree and the maximum degree of a graph G, respectively. In this note, we prove that every graph G with Δ ( G ) ⩾ 5 and mad ( G ) < 13 5 can be avd-colored with Δ ( G ) + 1 colors. This strengthens a result of Wang and Wang [W. Wang and Y. Wang, Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree, J. Comb. Optim., 19:471–485, 2010].
Keywords :
vertex-distinguishing edge coloring , maximum average degree , Edge coloring
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2011
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1455868
Link To Document :
بازگشت