Title of article :
(2q‎+‎1)-arcs in PG(3,q3)stabilized by a Sylow p-subgroup of PSL(2, q)
Author/Authors :
Vincenti، نويسنده , , Rita and Kroll، نويسنده , , Hans-Joachim، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
6
From page :
371
To page :
376
Abstract :
We construct arcs K of cardinality 2 q + 1 in the projective space P G ( 3 , q 3 ) , q = p h , p > 3 prime, from a cubic curve C . By construction, K is stabilized by a Sylow p-subgroup of the projectivities preserving C and it is contained in no twisted cubic of P G ( 3 , q 3 ) .
Keywords :
group of projectivities , ARC , Finite Projective geometry , Sylow subgroup , Twisted cubic
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2013
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1456149
Link To Document :
بازگشت