Title of article :
Rainbow Sets in the Intersection of Two Matroids
Author/Authors :
Aharoni، نويسنده , , Ron and Kotlar، نويسنده , , Daniel and Ziv، نويسنده , , Ran، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
4
From page :
39
To page :
42
Abstract :
Given sets F 1 , … , F n , a partial rainbow set is the range of a partial choice function, where if the same element x is chosen from k different F i ʼs it is considered as repeating k times. Aharoni and Berger [R. Aharoni and E. Berger, unpublished] conjectured that if M and N are matroids on the same ground set, and F 1 , … , F n are sets of size n belonging to M ∩ N , then there exists a rainbow set of size n − 1 belonging to M ∩ N . Following an idea of Woolbright and Brower-de Vries-Wieringa, we prove that there exists such a rainbow set of size at least n − n .
Keywords :
matroid intersection , rainbow matching
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2013
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1456298
Link To Document :
بازگشت