Title of article
An approximate blow-up lemma for sparse pseudorandom graphs
Author/Authors
Allen، نويسنده , , Peter and B?ttcher، نويسنده , , Julia and Hàn، نويسنده , , Hiê?p and Kohayakawa، نويسنده , , Yoshiharu and Person، نويسنده , , Yury، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2013
Pages
6
From page
393
To page
398
Abstract
We state a sparse approximate version of the blow-up lemma, showing that regular partitions in sufficiently pseudorandom graphs behave almost like complete partite graphs for embedding graphs with maximum degree Δ. We show that ( p , γ ) -jumbled graphs, with γ = o ( p max ( 2 Δ , Δ + 3 / 2 ) n ) , are “sufficiently pseudorandom”.
proach extends to random graphs G n , p with p ≫ ( l o g n n ) 1 / Δ .
Keywords
blow-up lemma , pseudorandom graphs , sparse regularity lemma , random graphs
Journal title
Electronic Notes in Discrete Mathematics
Serial Year
2013
Journal title
Electronic Notes in Discrete Mathematics
Record number
1456500
Link To Document