Title of article :
More on the crossing number of : Monotone drawings
Author/Authors :
P.R. and Carrasco-ءbrego، نويسنده , , Bernardo M. and Aichholzer، نويسنده , , Oswin and Fernلndez-Merchant، نويسنده , , Silvia and Ramos، نويسنده , , Pedro and Salazar، نويسنده , , Gelasio Salazar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
4
From page :
411
To page :
414
Abstract :
The Harary-Hill conjecture states that the minimum number of crossings in a drawing of the complete graph K n is Z ( n ) : = 1 4 ⌊ n 2 ⌋ ⌊ n − 1 2 ⌋ ⌊ n − 2 2 ⌋ ⌊ n − 3 2 ⌋ . This conjecture was recently proved for 2-page book drawings of K n . As an extension of this technique, we prove the conjecture for monotone drawings of Kn, that is, drawings where all vertices have different x-coordinates and the edges are x-monotone curves.
Keywords :
crossing number , Topological drawing , Complete Graph , Monotone drawing , k-edge
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2013
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1456505
Link To Document :
بازگشت