Title of article :
A full compatible three-dimensional elasticity element for buckling analysis of FGM rectangular plates subjected to various combinations of biaxial normal and shear loads
Author/Authors :
Asemi، نويسنده , , K. and Shariyat، نويسنده , , M. and Salehi، نويسنده , , M. and Ashrafi، نويسنده , , H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
13
From page :
9
To page :
21
Abstract :
In the present paper, a three-dimensional elasticity approach is employed to investigate buckling of heterogeneous functionally graded plates under biaxial compression, shear, tension-compression, and shear-compression load conditions. In this regard, a formulation that employs a full compatible three-dimensional Hermitian element with 168 degrees of freedom and guarantees continuity of the strain and stress components is used. It is known that all of the available famous commercial finite element softwares and the proposed series solutions satisfy continuity conditions of the displacement rather than the stress components. Buckling occurrence is detected based on checking both the instability onset and equilibrium criteria. Results are extracted based on a Galerkin-type orthogonality. Therefore, they are more accurate than those obtained based on the traditional Ritz method. The presented three-dimensional finite element analysis and the extracted results are quite new. A vast variety of results including results of biaxial compression, compression-tension, shear, and shear-compression load cases is considered and discussed in detail.
Keywords :
Buckling , Three-dimensional elasticity , shear , Functionally graded materials , Hermitian finite element , Compression
Journal title :
Finite Elements in Analysis and Design
Serial Year :
2013
Journal title :
Finite Elements in Analysis and Design
Record number :
1458582
Link To Document :
بازگشت