Title of article :
Plastic identification by remote sensing spectroscopic NIR imaging using kernel partial least squares (KPLS)
Author/Authors :
van den Broek، نويسنده , , W.H.A.M. and Derks، نويسنده , , E.P.P.A. and van de Ven، نويسنده , , E.W. and Wienke، نويسنده , , D. and Geladi، نويسنده , , P. and Buydens، نويسنده , , L.M.C.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1996
Pages :
11
From page :
187
To page :
197
Abstract :
This work describes the application of partial least squares (PLS) modeling in data reduction purposes for the classification of spectroscopic near infrared (NIR) images. Given multi-dimensional images (i.e. p images taken at p different wave-lengths regions in the NIR-range), PLS projects the (nearly void) high dimensional space into a low dimensional latent space using the coded class information of the sample objects. Hence, PLS can be considered as a supervised latent variable analysis. In addition, data reduction by PLS increases the speed of on-line classification which is attractive in, e.g., process control. In order to apply these conditions on imaging problems a rapid PLS version, kernel PLS, is investigated. Emphasis is put on the performance of PLS as a supervised data decomposition technique for the classification of collinear image data, applied on a real world application. This application entails the discrimination between the materials plastics, non-plastics and image backgrounds.
Keywords :
Multivariate image analysis , Kernel PLS , NIR imaging
Journal title :
Chemometrics and Intelligent Laboratory Systems
Serial Year :
1996
Journal title :
Chemometrics and Intelligent Laboratory Systems
Record number :
1459631
Link To Document :
بازگشت