Title of article :
Dynamic inferential estimation using principal components regression (PCR)
Author/Authors :
Hartnett، نويسنده , , M.K. and Lightbody، نويسنده , , G. and Irwin، نويسنده , , G.W.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1998
Pages :
10
From page :
215
To page :
224
Abstract :
Principal components regression (PCR) is applied to the dynamic inferential estimation of plant outputs from highly correlated data. A genetic algorithm (GA) approach is developed for the optimal selection of subsets from the available measurement variables, thereby providing a method of identifying nonessential elements. The theoretical link between principal components analysis (PCA) and state–space modelling is employed to identify a measurement equation involving the GA-selected subset, which is then used for inferential estimation of the omitted variables. These techniques are successfully demonstrated for the inferential estimation of outputs from a validated industrial benchmark simulation of an overheads condensor and reflux drum model (OCRD).
Keywords :
Principal Variables method , Inferential estimation , subset selection , Genetic algorithms , State–space modelling
Journal title :
Chemometrics and Intelligent Laboratory Systems
Serial Year :
1998
Journal title :
Chemometrics and Intelligent Laboratory Systems
Record number :
1459835
Link To Document :
بازگشت