Title of article :
Missing values in principal component analysis
Author/Authors :
Grung، نويسنده , , Bjّrn and Manne، نويسنده , , Rolf، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1998
Abstract :
Calculation schemes for principal component analysis are considered for the case when some matrix elements are missing. Iterative solutions are proposed—either a set of multilinear regression problems or as singular-value decomposition problems with iterative imputation of missing values. If mean values are subtracted from the data matrix, they should also be included in the iteration scheme. Test calculations using Matlab show that the regression approach is somewhat faster than the imputation approach. The results with a substantial amount of missing data are different and superior to those obtained with the naive NIPALS algorithm in common use in chemometrics.
Keywords :
Principal component analysis , Missing elements , Imputation , Regression approach
Journal title :
Chemometrics and Intelligent Laboratory Systems
Journal title :
Chemometrics and Intelligent Laboratory Systems