Title of article :
Application of rough set theory to feature selection for unsupervised clustering
Author/Authors :
F. Questier، نويسنده , , F. and Arnaut-Rollier، نويسنده , , I. and Walczak، نويسنده , , B. and Massart، نويسنده , , D.L.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2002
Pages :
13
From page :
155
To page :
167
Abstract :
Feature selection is a valuable technique in data analysis for information-preserving data reduction. This paper describes the use of rough set theory (RST) to construct reducts in a supervised way for reducing the number of features in unsupervised clustering. The application to a hierarchical clustering of Pseudomonas species is presented as an example. The Wallace measure is used for the comparison of the clustering results based on the original data set and those based on the reduced data set.
Keywords :
Unsupervised clustering , Wallace measure , Rough sets , feature selection
Journal title :
Chemometrics and Intelligent Laboratory Systems
Serial Year :
2002
Journal title :
Chemometrics and Intelligent Laboratory Systems
Record number :
1460638
Link To Document :
بازگشت