Title of article :
Uncertainty estimation for multivariate regression coefficients
Author/Authors :
Faber، نويسنده , , Nicolaas (Klaas) M، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2002
Pages :
11
From page :
169
To page :
179
Abstract :
Five methods are compared for assessing the uncertainty in multivariate regression coefficients, namely, an approximate variance expression and four resampling methods (jack-knife, bootstrapping objects, bootstrapping residuals, and noise addition). The comparison is carried out for simulated as well as real near-infrared data. The calibration methods considered are ordinary least squares (simulated data), partial least squares regression, and principal component regression (real data). The results suggest that the approximate variance expression is a viable alternative to resampling.
Keywords :
Jack-knife , Monte Carlo simulation , OLS , PLSR , PCR , NIR , Multivariate calibration , Uncertainty estimation , Regression vector , resampling , Bootstrap
Journal title :
Chemometrics and Intelligent Laboratory Systems
Serial Year :
2002
Journal title :
Chemometrics and Intelligent Laboratory Systems
Record number :
1460667
Link To Document :
بازگشت