Title of article :
Inference of the biodiesel cetane number by multivariate techniques
Author/Authors :
Nadai، نويسنده , , Diogo V. and Simُes، نويسنده , , Juliana B. and Gatts، نويسنده , , Carlos E.N. and Miranda، نويسنده , , Paulo C.M.L. Miranda، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
6
From page :
325
To page :
330
Abstract :
In this work, we have implemented a method which uses structural information from 1H NMR spectra of fatty esters and biodiesels to infer the corresponding Cetane Number (CN). The method consists of the successive application of Principal Component Analysis (PCA), Fuzzy Clustering and a feed-forward Artificial Neural Network (ANN) to the data set. PCA recognized redundant information, and determined the number of clusters for subsequent Fuzzy Clustering classification. At the final stage ANN used membership values from the Fuzzy Clustering process as inputs to predict the cetane number of different types of biodiesel (complex mixtures) from data of pure substances (esters). Root-mean-square deviations were in the range of 0.2–2.4.
Keywords :
neural network , Alkyl fatty esters , Cetane number , Fuzzy clustering
Journal title :
Fuel
Serial Year :
2013
Journal title :
Fuel
Record number :
1468934
Link To Document :
بازگشت