Title of article :
The Discrete Geometric Conservation Law and the Nonlinear Stability of ALE Schemes for the Solution of Flow Problems on Moving Grids
Author/Authors :
Farhat، نويسنده , , Charbel and Geuzaine، نويسنده , , Philippe and Grandmont، نويسنده , , Céline، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
26
From page :
669
To page :
694
Abstract :
Discrete geometric conservation laws (DGCLs) govern the geometric parameters of numerical schemes designed for the solution of unsteady flow problems on moving grids. A DGCL requires that these geometric parameters, which include among others grid positions and velocities, be computed so that the corresponding numerical scheme reproduces exactly a constant solution. Sometimes, this requirement affects the intrinsic design of an arbitrary Lagrangian Eulerian (ALE) solution method. In this paper, we show for sample ALE schemes that satisfying the corresponding DGCL is a necessary and sufficient condition for a numerical scheme to preserve the nonlinear stability of its fixed grid counterpart. We also highlight the impact of this theoretical result on practical applications of computational fluid dynamics.
Journal title :
Journal of Computational Physics
Serial Year :
2001
Journal title :
Journal of Computational Physics
Record number :
1476811
Link To Document :
بازگشت