Title of article :
Low-temperature deposition of amorphous silicon solar cells
Author/Authors :
Koch، نويسنده , , C. and Ito، نويسنده , , M. M. Schubert، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
We develop amorphous silicon (a-Si:H)-based solar cells by plasma-enhanced chemical vapor deposition (PECVD) at deposition temperatures of Ts=75°C and 100°C, compatible with low-cost plastic substrates. The structural and electronic properties of low-temperature standard PECVD a-Si:H, both doped and undoped, prevent the photovoltaic application of this material. In this paper, we demonstrate how to achieve device-quality a-Si:H even at low deposition temperatures. In the first part, we show the dependence of structural and carrier transport properties on the deposition temperature. The sub-band gap absorption coefficient and the Urbach energy increase when the deposition temperature declines from Ts=150°C to 50°C, the conductivity of doped layers and mobility-lifetime product of intrinsic a-Si:H drop drastically. Therefore, in the second part we investigate the impact of increasing hydrogen dilution of the feedstock gases on the properties of low-temperature a-Si:H. We restore n-type a-Si : H device-quality conductivity while the p-type a-Si:H conductivity is still inferior. For undoped layers, we depict the hole diffusion length, the mobility-lifetime product for electrons, the Urbach energy, and sub-band gap absorption coefficient as a function of the hydrogen dilution ratio. We incorporate these optimized materials in solar cell structures of single and multilayer design and record initial efficiencies of η=6.0% at a deposition temperature of Ts=100°C, and η=3.8% at Ts=75°C. For prospective opaque polymer substrates we develop, in addition to our conventional pin cells, devices in nip design with similar performance.
Keywords :
low temperature , amorphous silicon , PECVD , Hyrogen dilution , solar cell
Journal title :
Solar Energy Materials and Solar Cells
Journal title :
Solar Energy Materials and Solar Cells