• Title of article

    Numerical methods for semiconductor heterostructures with band nonparabolicity

  • Author/Authors

    Wang، نويسنده , , Weichung and Hwang، نويسنده , , Tsung-Min and Lin، نويسنده , , Wen-Wei and Liu، نويسنده , , Jinn-Liang Liu، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    18
  • From page
    141
  • To page
    158
  • Abstract
    This article presents numerical methods for computing bound state energies and associated wave functions of three-dimensional semiconductor heterostructures with special interest in the numerical treatment of the effect of band nonparabolicity. A nonuniform finite difference method is presented to approximate a model of a cylindrical-shaped semiconductor quantum dot embedded in another semiconductor matrix. A matrix reduction method is then proposed to dramatically reduce huge eigenvalue systems to relatively very small subsystems. Moreover, the nonparabolic band structure results in a cubic type of nonlinear eigenvalue problems for which a cubic Jacobi–Davidson method with an explicit nonequivalence deflation method are proposed to compute all the desired eigenpairs. Numerical results are given to illustrate the spectrum of energy levels and the corresponding wave functions in rather detail.
  • Keywords
    energy levels , Wave functions , Cubic eigenvalue problems , Matrix reduction , Cubic Jacobi–Davidson method , Explicit nonequivalence deflation , Semiconductor quantum dot , The Schr?dinger equation
  • Journal title
    Journal of Computational Physics
  • Serial Year
    2003
  • Journal title
    Journal of Computational Physics
  • Record number

    1477579