Title of article :
Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice: I. Homogeneous problems
Author/Authors :
Gosse، نويسنده , , Laurent and Markowich، نويسنده , , Peter A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
31
From page :
387
To page :
417
Abstract :
We present a computational approach for the WKB approximation of the wave function of an electron moving in a periodic one-dimensional crystal lattice. We derive a nonstrictly hyperbolic system for the phase and the intensity where the flux functions originate from the Bloch spectrum of the Schrِdinger operator. Relying on the framework of the multibranch entropy solutions introduced by Brenier and Corrias, we compute efficiently multiphase solutions using well adapted and simple numerical schemes. In this first part we present computational results for vanishing exterior potentials which demonstrate the effectiveness of the proposed method.
Keywords :
Periodic potential , homogenization , Vlasov equation , Semiclassical limit , Moment method , Non-strictly hyperbolic systems
Journal title :
Journal of Computational Physics
Serial Year :
2004
Journal title :
Journal of Computational Physics
Record number :
1477982
Link To Document :
بازگشت