• Title of article

    Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice: I. Homogeneous problems

  • Author/Authors

    Gosse، نويسنده , , Laurent and Markowich، نويسنده , , Peter A.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2004
  • Pages
    31
  • From page
    387
  • To page
    417
  • Abstract
    We present a computational approach for the WKB approximation of the wave function of an electron moving in a periodic one-dimensional crystal lattice. We derive a nonstrictly hyperbolic system for the phase and the intensity where the flux functions originate from the Bloch spectrum of the Schrِdinger operator. Relying on the framework of the multibranch entropy solutions introduced by Brenier and Corrias, we compute efficiently multiphase solutions using well adapted and simple numerical schemes. In this first part we present computational results for vanishing exterior potentials which demonstrate the effectiveness of the proposed method.
  • Keywords
    Periodic potential , homogenization , Vlasov equation , Semiclassical limit , Moment method , Non-strictly hyperbolic systems
  • Journal title
    Journal of Computational Physics
  • Serial Year
    2004
  • Journal title
    Journal of Computational Physics
  • Record number

    1477982