Title of article :
An evolution Galerkin scheme for the shallow water magnetohydrodynamic equations in two space dimensions
Author/Authors :
Kr?ger، نويسنده , , Tim and Luk??ov?-Medvid’ov?، نويسنده , , M?ria، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
28
From page :
122
To page :
149
Abstract :
In this paper we propose a new finite volume evolution Galerkin (FVEG) scheme for the shallow water magnetohydrodynamic (SMHD) equations. We apply the exact integral equations already used in our earlier publications to the SMHD system. Then, we approximate these integral equation in a general way which does not exploit any particular property of the SMHD equations and should thus be applicable to arbitrary systems of hyperbolic conservation laws in two space dimensions. In particular, we investigate more deeply the approximation of the spatial derivatives which appear in the integral equations. The divergence free condition is satisfied discretely, i.e. at each vertex. First numerical results confirm reliability of the numerical scheme.
Keywords :
Shallow water magnetohydrodynamic equations , Finite Volume Methods , Evolution Galerkin schemes , Genuinely multidimensional schemes , hyperbolic systems
Journal title :
Journal of Computational Physics
Serial Year :
2005
Journal title :
Journal of Computational Physics
Record number :
1478479
Link To Document :
بازگشت