Title of article :
Convergence properties of Monte Carlo functional expansion tallies
Author/Authors :
Pia Griesheimer، نويسنده , , David P. and Martin، نويسنده , , William R. and Holloway، نويسنده , , James Paul، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
The functional expansion tally (FET) is a method for constructing functional estimates of unknown tally distributions via Monte Carlo simulation. This technique uses a Monte Carlo calculation to estimate expansion coefficients of the tally distribution with respect to a set of orthogonal basis functions. The rate at which the FET approximation converges to the true distribution as the expansion order is increased is developed. For sufficiently smooth distributions the FET is shown to converge faster, and achieve a lower residual error, than a histogram approximation.
Keywords :
Surface crossing estimator , Tally , Legendre polynomials , Monte Carlo , Functional expansion
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics