Title of article :
The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes
Author/Authors :
Konstantin Lipnikov، نويسنده , , Konstantin and Shashkov، نويسنده , , Mikhail and Svyatskiy، نويسنده , , Daniil، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
19
From page :
473
To page :
491
Abstract :
We study the mimetic finite difference discretization of diffusion-type problems on unstructured polyhedral meshes. We demonstrate high accuracy of the approximate solutions for general diffusion tensors, the second-order convergence rate for the scalar unknown and the first order convergence rate for the vector unknown on smooth or slightly distorted meshes, on non-matching meshes, and even on meshes with irregular-shaped polyhedra with flat faces. We show that in general the meshes with non-flat faces require more than one flux unknown per mesh face to get optimal convergence rates.
Journal title :
Journal of Computational Physics
Serial Year :
2006
Journal title :
Journal of Computational Physics
Record number :
1478815
Link To Document :
بازگشت