Title of article :
A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows
Author/Authors :
Restelli، نويسنده , , M. and Bonaventura، نويسنده , , Andrea L. and Sacco، نويسنده , , R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
21
From page :
195
To page :
215
Abstract :
A new, conservative semi-Lagrangian formulation is proposed for the discretization of the scalar advection equation in flux form. The approach combines the accuracy and conservation properties of the Discontinuous Galerkin (DG) method with the computational efficiency and robustness of Semi-Lagrangian (SL) techniques. Unconditional stability in the von Neumann sense is proved for the proposed discretization in the one-dimensional case. A monotonization technique is then introduced, based on the Flux Corrected Transport approach. This yields a multi-dimensional monotonic scheme for the piecewise constant component of the computed solution that is characterized by a smaller amount of numerical diffusion than standard DG methods. The accuracy and stability of the method are further demonstrated by two-dimensional tracer advection tests in the case of incompressible flows. The comparison with results obtained by standard SL and DG methods highlights several advantages of the new technique.
Keywords :
Advection equation , Conservative tracer transport , discontinuous Galerkin finite element method , Flux form semi-Lagrangian techniques
Journal title :
Journal of Computational Physics
Serial Year :
2006
Journal title :
Journal of Computational Physics
Record number :
1479155
Link To Document :
بازگشت