Title of article :
A Darcy law for the drift velocity in a two-phase flow model
Author/Authors :
Guillard، نويسنده , , H. and Duval، نويسنده , , F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
26
From page :
288
To page :
313
Abstract :
This work deals with the design and numerical approximation of an Eulerian mixture model for the simulation of two-phase dispersed flows. In contrast to the more classical two-fluid or Drift-flux models, the influence of the velocity disequilibrium is taken into account through dissipative second-order terms characterized by a Darcy law for the relative velocity. As a result, the convective part of the model is always unconditionally hyperbolic. We show that this model corresponds to the first-order equilibrium approximation of classical two-fluid models. A finite volume approximation of this system taking advantage of the hyperbolic nature of the convective part of the model and of the particular structural form of the dissipative part is proposed. Numerical applications are presented to assess the capabilities of the model.
Keywords :
Chapman–Enskog expansion , Bubbly flows , two-phase flows , Drift-flux , Darcy law , Riemann solver
Journal title :
Journal of Computational Physics
Serial Year :
2007
Journal title :
Journal of Computational Physics
Record number :
1479782
Link To Document :
بازگشت