Title of article :
Stochastic spectral methods for efficient Bayesian solution of inverse problems
Author/Authors :
Marzouk، نويسنده , , Youssef M. and Najm، نويسنده , , Habib N. and Rahn، نويسنده , , Larry A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
27
From page :
560
To page :
586
Abstract :
We present a reformulation of the Bayesian approach to inverse problems, that seeks to accelerate Bayesian inference by using polynomial chaos (PC) expansions to represent random variables. Evaluation of integrals over the unknown parameter space is recast, more efficiently, as Monte Carlo sampling of the random variables underlying the PC expansion. We evaluate the utility of this technique on a transient diffusion problem arising in contaminant source inversion. The accuracy of posterior estimates is examined with respect to the order of the PC representation, the choice of PC basis, and the decomposition of the support of the prior. The computational cost of the new scheme shows significant gains over direct sampling.
Keywords :
inverse problems , Polynomial chaos , Markov chain Monte Carlo , galerkin projection , Bayesian inference , Monte Carlo , Diffusive transport , Spectral methods
Journal title :
Journal of Computational Physics
Serial Year :
2007
Journal title :
Journal of Computational Physics
Record number :
1479803
Link To Document :
بازگشت