Title of article :
Domain decomposition method for Maxwell’s equations: Scattering off periodic structures
Author/Authors :
Schنdle، نويسنده , , Achim and Zschiedrich، نويسنده , , Lin and Burger، نويسنده , , Sven and Klose، نويسنده , , Roland and Schmidt، نويسنده , , Frank، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
17
From page :
477
To page :
493
Abstract :
We present a domain decomposition approach for the computation of the electromagnetic field within periodic structures. We use a Schwarz method with transparent boundary conditions at the interfaces of the domains. Transparent boundary conditions are approximated by the perfectly matched layer method (PML). An adaptive strategy to determine optimal PML parameters is developed. Thus we can treat Wood anomalies appearing in periodic structures. us on the application to typical EUV lithography line masks. Light propagation within the multilayer stack of the EUV mask is treated analytically. This results in a drastic reduction of the computational costs and allows for the simulation of next generation lithography masks on a standard personal computer.
Keywords :
Electro-magnetic scattering , Lithography , Maxwell’s equations , Finite elements , Perfectly matched layer method , domain decomposition , Conical diffraction , EUV
Journal title :
Journal of Computational Physics
Serial Year :
2007
Journal title :
Journal of Computational Physics
Record number :
1480119
Link To Document :
بازگشت