Title of article :
Multi-scale plasma simulation by the interlocking of magnetohydrodynamic model and particle-in-cell kinetic model
Author/Authors :
Sugiyama، نويسنده , , Tooru and Kusano، نويسنده , , Kanya، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
13
From page :
1340
To page :
1352
Abstract :
Many kinds of simulation models have been developed to understand the complex plasma systems. However, these simulation models have been separately performed because the fundamental assumption of each model is different and restricts the physical processes in each spatial and temporal scales. On the other hand, it is well known that the interactions among the multiple scales may play crucial roles in the plasma phenomena (e.g. magnetic reconnection, collisionless shock), where the kinetic processes in the micro-scale may interact with the global structure in the fluid dynamics. To take self-consistently into account such multi-scale phenomena, we have developed a new simulation model by directly interlocking the fluid simulation of the magnetohyrdodynamics (MHD) model and the kinetic simulation of the particle-in-cell (PIC) model. The PIC domain is embedded in a small part of MHD domain. The both simulations are performed simultaneously in each domain and the bounded data are frequently exchanged each other to keep the consistency between the models. We have applied our new interlocked simulation to Alfvén wave propagation problem as a benchmark test and confirmed that the waves can propagate smoothly through the boundaries of each domain.
Keywords :
MHD , multi-scale , Interlocked simulation , PIC , PLASMA
Journal title :
Journal of Computational Physics
Serial Year :
2007
Journal title :
Journal of Computational Physics
Record number :
1480385
Link To Document :
بازگشت