Title of article :
A fast multipole method for the three-dimensional Stokes equations
Author/Authors :
Tornberg، نويسنده , , Anna-Karin and Greengard، نويسنده , , Leslie، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
7
From page :
1613
To page :
1619
Abstract :
Many problems in Stokes flow (and linear elasticity) require the evaluation of vector fields defined in terms of sums involving large numbers of fundamental solutions. In the fluid mechanics setting, these are typically the Stokeslet (the kernel of the single layer potential) or the Stresslet (the kernel of the double layer potential). In this paper, we present a simple and efficient method for the rapid evaluation of such fields, using a decomposition into a small number of Coulombic N-body problems, following an approach similar to that of Fu and Rodin [Y. Fu, G.J. Rodin, Fast solution methods for three-dimensional Stokesian many-particle problems, Commun. Numer. Meth. En. 16 (2000) 145–149]. While any fast summation algorithm for Coulombic interactions can be employed, we present numerical results from a scheme based on the most modern version of the fast multipole method [H. Cheng, L. Greengard, V. Rokhlin, A fast adaptive multipole algorithm in three dimensions, J. Comput. Phys. 155 (1999) 468–498]. This approach should be of value in both the solution of boundary integral equations and multiparticle dynamics.
Journal title :
Journal of Computational Physics
Serial Year :
2008
Journal title :
Journal of Computational Physics
Record number :
1480406
Link To Document :
بازگشت