Title of article :
A proof that a discrete delta function is second-order accurate
Author/Authors :
Beale، نويسنده , , J. Thomas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
3
From page :
2195
To page :
2197
Abstract :
It is proved that a discrete delta function introduced by Smereka [P. Smereka, The numerical approximation of a delta function with application to level set methods, J. Comput. Phys. 211 (2006) 77–90] gives a second-order accurate quadrature rule for surface integrals using values on a regular background grid. The delta function is found using a technique of Mayo [A. Mayo, The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Numer. Anal. 21 (1984) 285–299]. It can be expressed naturally using a level set function.
Keywords :
Level set function , surface integral , Discrete delta function
Journal title :
Journal of Computational Physics
Serial Year :
2008
Journal title :
Journal of Computational Physics
Record number :
1480458
Link To Document :
بازگشت